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Introduction

In investigating the flow of a relaxing gas with internal degrees of freedom it is customary to use phenomenological
equations for the macroscopic quantities, including the second viscosity, the heat conduction due to internal energy trans-
port, and the internal energy itself. In a relaxing medium the internal energy is not a function of temperature, but de-
pends on the process and is determined by the probabilities of energy transfer between molecules.during collisions. For
the internal energy of the gas it is usual to employ a so-called relaxation equation of the type

de . s—s0(T)
dt — (T, p)

where d/dt is the substantive derivative, 5(0)(T) is the value of the internal energy in the equilibrium state, and 7 is the
relaxation time.

In reality, however, expressions of this type are valid only if very special assumptions are made concerning the na-
ture of energy transfer between molecules. Moreover, in the general case it is usually impossible to write a single equa-
tion for the internal energy. The derivation of rigorous equations must be based on a kinetic analysis.

A number of authors have attempted to derive from the Boltzmann equation macroscopic equations describing the
motion of a gas with the internal degrees of freedom taken into account. In [1] the problem was formulated and the lim-
fting cases of very fast and very slow transitions ~ from translational energy to internal energy of the molecules — dis-
cussed. This treatment (unfortunately, known to the author only in the form of a very brief discussion of the results in
[2]) has formed the basis of all subsequent attempts.

In [3] the influence of vibrational degrees of freedom on the coefficients of viscosity and heat conductivity was
studied for the case where the time to establish equilibrium between vibrational and translational degrees of freedom is
much less than the characteristic time of the process. In [4] Zhigulev considered the case of flows with vibrational relax-
ation on the assumption that the probability of vibrational energy transfer between molecules during collisions is of the
same order as the probabilities of transfer of translational energy. In [5], which appeared after this paper had been pre-~
pared for the press, Vallander and Nagnibeda investigated the equations for a gas with internal degrees of freedom on the
assumption that the gas is always in equilibrium with respect to translational velocities. The contents of [5] are closely
related to §4 of this paper, the subject of which is the general case of a gas with an arbitrary number of relaxation times.
It is shown. in particular, that in the general case the diagonal terms of the stress tensor contain, in addition to the pres-
sure p = RTp. another term that is independent of the gradients. Then the temperature entering into the equation is not
equal to the mean transiational energy of the molecules.

§1. Following [1], we shall consider the translational motions of the gas molecules in classical terms and the inter-
nal degrees of freedom in terms of quantum mechanics. Molecules in the quantum state v (with internal energy EYY will
be regarded as a gas of the v-th kind, so that the gas represents a mixture of gases differing in their quantum states. The
state v may be defined by one or more quantum numbers characterizing the excitation of rotational, vibrational or elec-
tronic levels of the molecules.

Let f,(t. x. EY) be the velocity distribution function for molecules in the v-th state (of the v-th kind). Then Boltz-
mann's equation may be written in the form:

df, of, of,
@ T Tt + gi a_x‘i‘ = }%l g[fkfl - fpfv] Pvpkl (E", g+, gk’gl) gvp»dgkdgldg“ (1. 1)

g =8 —8| &=t ..,Np=14..,N k=1,..,N I=1,...,N)

where Pf& (E)E™, EF, BY) is the probability (collision cross section) that as a result of a collision between molecules in
states v and p with velocities £¥ and §*, respectively, the molecule v goes over into the state k and acquires a velocity
Ek, while the g -molecule goes over into the state ! and acquires a velocity £l The distribution functions are normalized
so that

n (¢, x) = 8 fdgY (1.2)
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wlicre 2V is the number of particles in state v in unit volume.

The mean velocity of the v-th component of the gas

1
w = < {endg 0.9
Since the masses of all the molecules are the same, the macroscopic velocity of the gas as a whole
1
u = ———vauv (n:ZnV> (1. 4)
n M v ‘
where n is the total number of molecules in unit volume. Multiplying each of Eqs. (1. 1) by 1, §iU, and (1/2)mgv? + gV

in turn, integrating with respect to €V, and summing the equations with respect to v, we get the following conservation
equation:

Conservation of number of particles

on onu 3
i ——axr’ =0 . (1.3)

Conservation of momentum

) ) 1 9
(o7 + oz o + s p Py =0 . (1.6)
Conservation of energy
a a3 3 aqr Oui
n(—(a—t-—{-u,g;;)(TkT—{—s):—%r——P{,é;r (.7
where
Py = Dmcoepray (o0 = 8 —ug (1.8)
v
9 = chrv ("’; + E") fydE (1.9
3 1 me¥? v
- kT = TZTSMI‘;’ (1. 10)
e = —ri‘—zE"n" . (1.11)

The right sides of the equations vanish, since the total number of particles, their momentum and energy do not
change during collisions. Thus, we have five equations with 14 unknowns: n, uj, qj. Pjj, and ¢ (the tensor Pjj is sym-
metrical and T can be expressed in terms of P3).

$2. Before proceeding to derive the missing relations, we shall describe a method, more convenient for our pur-
pose, of expanding solutions of the Boltzmann equation with respect to a small parameter. Let us write Boltzmann's equa-
tion for a monatomic gas in the form:

l

d 1 1
% =gJ=7 S(h’f’ — 15) gPy; (. €1, &', Ex') dE1dE"dEY 2.1)

1

where the same letters denote dimensionless functions referred to their characteristic values; then the parameter ¢ is
equal to the ratio of the mean time between collisions to the characteristic time of the process, i.e., to the Knudsen
number.

Integrating (2. 1) over the trajectory of the particles with velocity £, we have

7 (&, 20+ § (¢ — o), §) —f (o, 2o, g):—i—SJ(s, o+ & (5 —to), E)ds . (2.2)

t

Let T =t — t; be of the order of e. If over the length of the free path or in the time T = O(e) the distribution func-



tion changes so slowly (i, e., if e <« 1) that the changes may be neglected, then the distribution function must satisfy
the condition

13
&J(s)ds:O, J(t)=0. 2. 3)
0

The second equation (2. 8) is known to be satisfied by a local Maxwell distribution. Thus, the assumption that the
change in the distribution function over the free path is negligibly small requires a locally equilibrium velocity distribu-
tion.

Let the variation of the distribution function over the free path be small, so that it can be represented in the form

/

d
(to+7, @+ 5, B =/ (to, @0, §) + N

g g @9

If we keep two terms of this expansion, then at each point of the flow the distribution function must be close to Max-

wellian, i.e.,

fhe =10 Ol +ot s8] (fO=n [ I ]3/' exp —2211?) (%)

where f(o) is Maxwell's distribution and ¢ is a small component. Substituting (2. 5) in (2. 2), we get:
totT

1
= | VG 9+ @ e,
te

JO(f, @) = [FO%HO (@1 + ¢' — @1 — @) gPw™ (§, &1, T/, &) dEsdE, dE’

IO(g, 9) = [OHO (@1 @' — Q1) gPw" (&, &1, E/, Er') dE1dE/dE’

From (2. 6) it is clear that the function ¢ must be of the order of &, so that, neglecting quantities of the order of
g%, at any point x at any moment of time we must have

df(o) df(o)(p
dt  |e=p v+ dt

T=0

©. 6)

af©®
e fit =JW (%, 9), 2.7

the standard integral equation for finding ¢. The process may be continued so as to yield higher-order corrections.

Conditions (2. 3) and (2. 7) presuppose that the distribution function changes little over the free path or between col-
lisions. If the distribution function changes by a full order, then there are no supplementary conditions and it is necessary
to solve the Boltzmann equation (2. 1) itself.

Note that in order to construct a solution we only require the existence of the derivatives over the trajectory of the
molecules d/dt, whereas the partial derivatives d /0t and 8 /0x may not exist,

§3. Boltzmann's equations (1. 1) may also be written in dimensionless form:

T AN AV LA 6.1

dt Bl 2l €2 Lkl € Lkl

where the sums Z:y(l), EU(Z), etc. combine terms with coefficients 5{1 of the same order. The value of the parameters
&; Is determined by the transition probabilities PU“kZ ’

Usually the highest probability is that of transfer of transiational energy from particle to particle without change in
internal energy. We shall assume that € and Zu(l) relate to such transitions,

Then follow the probabilities of transfer between translational and rotational energy. resonance exchange of vibra-
tional quanta (without conversion of vibrational into translational energy), transfer between translational and vibrational
energy. etc. Since the probability of excitation of molecular rotations falls with increase in temperature, while the prob-
ability of exciting vibrations increases, at temperatures of the order of 2,5-3, 0 - 10* °K these probabilities are of the
same order [6], It is possible to get cases of "meshing” and other processes as, for example, transfer between vibration
and rotation, simultaneous excitation of vibrational and electronic levels, vibration and dissociation, etc, However, in
order not to complicate the picture, we shall disregard collisions with change in the number of particles.

We shall assume that there are certain "nonmeshing” processes or combinations of processes, so that we cap form
the sums in (3. 1) with 1 « &, « &4, and so on. Each of these groups is characterized by its mean relaxation time U; =
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= ¢;6, where O is the characteristic time of the process. As in the preceding section, we integrate (3. 1); we have

-

Fo(ty T X BT ) — fu(ty %, B) = 5o

T tyt+T
Mg -1‘—%2 \ S®de L. (3.2)

1y

[ e

o
-

Putting 7 = O(e,) and analyzing the nature of the variation of the distribution function during this time, we can derive
supplementary conditions analogous to (2, 3) and (2. 7).

§4. Let, for example, the flow be such that ¢; « ey ~ 1 « €3, and let the chan%es in the distribution function over
the free path (or during time 6;) be negligible. Putting 7 = O(e;) in (3. 2), we get T, () = 0, and hence

© = pv _’”__>”/2 2
1O =n <2k:rrT exp {— g 2 1

i.e., the translational degrees of freedom are in equilibrium at the translational temperature T. In this case there is no
diffusion of the v-components, since ur"' = u,. After substitution of the distribution function (4. 1) in P and q; the con-
servation equations assume the form:

an - 2 Y. 1 ap
Tt =0 (7;7+“r5;,)“1—*ma7i ’ 2
9 2\/3 du, B

The system of six equations (4. 2) is not closed, since, apart from the ordinary hydrodynamic variables n, u. p,
and T, it contains the internal energy, to determine which it is necessary to know all the n”. 1In order to find the latter,
we integrate Eqs. (1. 1) with respect to £/, substituting for f;, on the right side the equilibrium function with respect to

translational velocities fy,'°

Then, since Zy(l) =0, we get the following system of semi-macroscopic equations (the term Ey(a) is neglected):

on’ du,n’ 1 <.> A kL \
-—-5t— + T @ }LZkl n n U,kl nvnp‘avp,) (4 3)
where
afﬁ 1 Sf(o)fp(O)Pkl(gv g, EF, gl gmdt:kdgldrépdg

is the velocity-averaged probability of transition of v- and g-molecules to the states k and I, respectively, upon collision.

Obviously. the coefficients ¢ depend only on the translational temperature T. Thus, equilibrium of the gas with re-
spect to translational degrees of freedom makes it possible to deal with less detailed information on the transition proba-
bilities® in order to find n” (we need to know only the integral probabilities a rather than the differential probabilities P).
Since the occupation numbers of the levels n¥ change by a full order during the relaxation time 6y, assuming (e ~ 1), in
the general case it is necessary to solve system (4. 2) simultaneously with system (4. 3), i.e., the process of taking into
account the internal degrees of freedom can not be reduced to adding to system (4. 2) a single additional equation for the

internal energy e.

At the same time, in special cases with definite properties of the transition probabilities the system of nonlinear
equations (4. 3) can be simplified or even reduced to a single equation for the internal energy or the temperature of the
internal degrees of freedom.

Consider, for example, a gas in which the transition probabilities have the following properties [7]. The highest

probability is that of transitions with a unit change in quantum number, i.e., transitions of the form af,;“'”*’“——— al .

The probability of deactivation is exp (AEY/kT) times greater than the probability of excitation of a level, i e.,

o'V = al_,exp (AEY[kT), where AEY = Ev —Ev-t .

v

* 1t is possible to deal with even less detailed information on the transition probabilities after summing the terms on
the right side of (4. 3):

. ?l.. du "’ == 2 n n akl - 2 nvnp'avp. (akl = 2 akl' :
B

ot

kI
Gy ) .
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This assumption follows from the principle of detailed equilibrium. Further, let a,””!= vay®.- We shall also assume
that the levels EV are distributed as in an harmonic oscillator, i.e., EV = vhw, where w is the frequency. Then, neglect-
ing transitions with changes of two or more in the quantum number, we get:

0‘; + Br(;z __Z [vn“a ( v1exp(—;;}m)_n)+(v+1)n”a ( 1_n exp( k?;’m)].

Summing with respect to g and bearing in mind that Z n* = n, we have:
" A

v

3ar: -+ axu =na} [vn"“l exp (-—— ELICQT_) —vw' v+ — (v 1R’ exp(— %i;,-)] . (4. 4)

Multiplying each of equations (4. 4) by E” = vhw, and summing with respect to v, we get:

(——gt— +u, 5565) & = nagl (1 — exp( )) (e®@ (T) —e)

£ (T) = ho (exp ho | kT — 1)1 -

(4. 5)

where 5(0)(T) is the equilibrium energy of the oscillator system at temperature T, Thus, in this case Eq. (4. 5) closes
system (4. 2).

In [7] it was shown that resonance transitions of vibrational quanta have higher probability than transitions between
vibrational and translational energy. In this case the vibrational degrees of freedom come into equilibrium at a certain
vibrational temperature Ty not equal to T [4].

Let 6, be the relaxation time of the resonance transitions and 6 the relaxation time for energy transfer between
translation and vibration, and let &3 = &, = €3,

_There are three possible cases. If the characteristic time of the process is small compared with 85, i.e., & > 1.
then the flow is frozen.

If €5 ~ 1 and €, < €5, then energy transfer between translation and vibration may be neglected, and the motion of
the gas is described by system (4. 2). In the sums on the right sides of Egs. (4. 3) there remain only the terms with reso-
nance transitions. Obviously, in this case we have

d 9
ot T, )e =0
since for such transitions there is no change in the mean internal energy of the molecules.

Finally, if ey << &g ~ 1, then, putting T ~ &; in (3. 2) and assuming that in this time or over the corresponding dis-
tances changes in the distribution function may be neglected, we get:

t+t tott

1 1
—_— S zv(l)dt + >y g Zv(z)dt =0
ty 3
The solution of this equation is the function
m \° —mcv2 —E*
]zv(o) ;n (2nkT) exp 5 exp kT /Z exp kT . (4. 6)

Multiplying (1. 1) by EV, integrating with respect to gV, substituting distribution (4. 6) on the right side instead of f,
and adding the equations, we get:

) ® B’ v EB*+ B! )
(3f+ “r r)e_.n 2 [Zexp (— E” [ kT ,)]? [ak% exp (— KTy ]
vpkl 4.7

ot _E4 B
. €XD AT, .

Since in the equilibrium state & is uniquely related to Ty. Eq. (4. 7) closes system (4. 2).

In accordance with [7], the assumptions made in deriving (4. 5) hold true for a‘,"‘i' . If we again regard the molecules
as oscillators with energy E,, = vhw, then formula (4. 5), in which e now has the equilibrium (at Ty) value
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e:hm(exp{},ﬂ——i)
3

also holds,

As might be expected, the presence of resonance transitions has no effect on the form of the system of macroscopic
equations when system (4. 2) can be closed with a single equation for the internal energy [in our case Eq. (4. 3)}. since
resonance transitions do not alter the internal energy of the gas.

Finally, let us consider the common situation when one type (denoted by &,) of internal energy (e. g.. rotational)
is in equilibrivm with the translational degrees of freedom (i.e.. &, « 1), whereas the relaxation time for another type
(denoted by eg) of internal energy (e. g, vibrational) is of the same order as the characteristic time of the process™ i.e.,
€y ~ 1, Each v-state may be regarded as a superposition of the v,- and vg-states corresponding to the first and second
types of internal energy. We shaill apply the term vg-gas to a gas consisting of molecules with internal energy of the sec-
ond type in the vg-state and in an arbitrary state v,. In this case the distribution function assumes the form:

v2\—1
(2 exXp — - £ ) (4.8)

m L’
7,0 = p¥ <—_'2nkT) exp (ZkT c"2>exp

where
ne =2\ rod .
v; ©

The mean intermnal energy

Vo Vg

i I g1
g = g0 (T) —+ 72 nvs Evs g0 (T) = 2 EY: exp ——-k—T—l:zexp Uk_E—‘f—:I . 4.9
A{]

Integrating (1. 1) with respect to & and summing the equations with respect to all the v, corresponding to 2 single
vy, while bearing in mind that

Z 22 nY = n% eXp — o (2 exp TE” ___Evz ) -

Vs Vg

we get:

o™ Ounv B S E" 1 B
=+ (Zexp ) 2 (akm 3naexp<_«*,ﬁ?___) —

volr Rl
E’: L E}Lz)\
kT )

(4. 10)
J— a\i{n"sn}la exp (__

Summing the right sides of Eqs. (4. 10) with respect t0 vy, Up, Kp and I, we get Egs. (4. 3) in which the subscripts
v, g, k, and 7 must be replaced by vs, ug, kg, and l3, respectively, where

Wy \ —2 v, 4

. S knglyls E * | fP2

a\‘:}fs = (Z e‘\p kT 2 a"‘z"ﬂ*zk“z eXp kT .
V2 ValtaRala

This system can be reduced to a single equation for € only if the transition probabilities have special properties,
e.g., those assumed in deriving (4. 5) or (4. ).

§5. In the preceding section it was assumed that the distribution function does not change during a time (or over a
length) of order €;. We shall now consider a flow in which it is impossible to neglect such changes in the distribution
function. At the same time, these changes will be assumed to be so small that the distribution function can be represent-
ed in the form:

[ b+, % 8) = f(ty, x—8v, §) + dfjdt o T . (5. 1)

Here. as above, there may be a wide variety of possible relations between the characteristic relaxation times and the
characteristic time of the process. Below we consider some of these. Other cases may be treated analogously.

* All that follows remains valid if there is not one mode for which €, <« &3, but several modes with &; « &g,
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Let us consider first of all the case where all ¢ < 1 and during the time (over the length) of the leastofthem, &y,
the change in the distribution function is given by (5. 1). This case is discussed in relation to vibrational relaxation in
(31 Putting 7 ~eqin (3.2). we get in the first a )proxnuatlon.

Z“i‘ 2P =0. (. 2)

Obvicusly, the solution of these equations is the distribution function corresponding to equilibrium between the
transtational and internal energy

m \* —me*? —E\‘/kTI‘ — E" |~ -
© — > 5.3
e _n(2nkT) OXP g7 © || ®.8)

If we take into account small changes over a length of the order of €, the distribution function must be only slightly dif-

ferent from (5.38), i.e

fv =01+ qv) . (5. 4)

Substituting (5. 4) in (3. 2) for T ~ &, and discarding terms of order €%, by analogy with (2. 7) we get the linear in-
tegral equations .

v" (1) 1
! Z T (f, ;—z T (he) + ... (. 5)

where

2 0) = {7207, (9, + 0, — 0, —@,) Phig, dE* dF' dE*

Substituting the function (5. 3) on the left of (5.5), we get:
dfv“” 5, E'—e(T)\ olnT , m du;
. 2 - = v — vay %
fv {( c 2 + kT ) Cr a$r + k T (Cr C‘t 61'1,C ) axr +

+[é kacz 1“’“(2;56”2‘%4‘&:122&)(%]“ 4_@?%!2) ]rhr

(5. 6)

Here the partial derivatives with respect to t have been eliminated with the aid of Euler's equations (4. 2), and 5(0)(T) is
the equilibrium value of the mean internal energy:

e (T) = ZE exp( )/2 6xp

It is easy to verify that zero is an eigenvalue of Eqs. (5. 5), and that the functions ; == 1, £, ‘amg¥* -+ EV
are eigenfunctions. For the existence of a solution of the nonhomogeneous equations it is necessary that

e a0
" "*pt( ) dt -

Since the eigenfunctions coincide with the invariants by which the Boltzmann equations were multiplied in deriv-
ing the Euler equations (4. 2), used in obtaining expressions, (5. 6), these conditions are fulfilled. The form of the leftside
of Eas. (5. 5) makes it possible to seek a solution in the form: »

valnT aul vaul ® ®E ¥ mf,v2 v
@, =—Ap 7, sz — D’ — 4 o* + B,*E, +T*(—~2—+E) (5.7.1)
or
valnT v v2 v - oo
‘Pv—“-—‘AkTg;k* ”‘a +a+Brcr+T( —l—E) (5.7.2)

where Ay, BV, and DY are functions of ¢, T, and EY.

By an analysis analogous to that carried out in [8] it can be shown that

A=A, By = (Clvck” “'*% 5zkc“2) B, D'=D (5. %)
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where AY, BY, and DY are functions of ¢, T, and EY. The constants o, 8y, and y (or o 8%, and y*) can be subjected
to the conditions

ZS]")O(PV dE’ =0, Eggvfjo)(pv dg’ = 0, 73{_2__ s E") (O)QJ dt” =0 . . 9)

Then

E"] S]‘vdgv . 2 vam)dﬁvzz n, :: S ', dE* = 2 va(o)avdgv: ni
ZS(%”—E +E) fode = ZS(’EF« Ny ),«“’) dE":n(—; kT -+ s‘°>(T)j‘ .

It should be noted that with these conditions the temperature T is not equal to the temperature determined by
(1. 10). Instead of the last condition (5. 10), it is possible to require that the temperature be determined by (1. 10), i.e
be a measure only of the translational energy of the molecules. In this case, however, the expression for the internal
energy will be more complicated.

(5. 10)

Substituting (5. 7. 1) in (5. 5) and equating the terms associated with the same derivatives of the macroscopic quan-
tities, we get integral equations for AY, BY, and DY, for whose solution it is necessary to know the specific law of inter-
action between molecules and the distwribution of the molecules over the energy levels, together with all the transition
probabilities. However, certain qualitative conclusions may be drawn directly from the form of the solutions of the equa-
tions. without actually solving them.

On substituting (5. 4) in (1. 7) on the left side, as a consequence of conditions (5. 9), instead of ¢ we can put the
equilibrium function ¢")(T) defined by (5. 8). After substitution of (5. 4), the stress tensor by and the heat flux vector
q; may be expressed in terms of n, uj, and T, so that the system (1. 5)-(1. 7) is closed.

From the first and third of conditions (5. 9), after substitution of (5. 7. 2), it follows that « and y may be expressed
in terms of Bu; /0x, and from the second condition that 8, is proportional to 9InT/dx,. Therefore these quantities may
be included in A" and DY, respectively. without changing their essential form. Then the solution has the form (5. 7. 1),
where o, B and y are equal to zero. Substituting these solutions in the definition of the tensor P;; and the vector ¢, we

have
Py = 2 m S eefydE = m }; S e, )0 dEv + m ‘5‘ Sci"cr"/v“”
g, = ngci 5 fodf = Z mg e S ,’ f0 g dE = — A %% G
g = ggci\'lﬂ% dE’ = : E"S e, dE” = “-?vzg%
where
po= %ESBQ“{/V@ &, L=ms S Do 0 g
! " (5.12)

;\'1 SAchfv(g) d&v, 9»2 — 3T ‘“JE\J S Av vzf () dE

6T

The shear viscosity ¢ depends on the internal energy only via the transition probabilities (B is not expressed directly in
terms of EY). The volume viscosity ¢ is directly linked with the internal energy, since EY and de )/dT form part of the
left side of the integral equation for DY. The quantities AY, and hence the heat conductivity A;, can be represented in

the form of two components, one of which depends directly on E¥, while the other depends on EV only via the transition

probabilities {this is easily seen from (5. 6)].

Let us now consider the general case where, together with those already considered (g; « 1, 1 =n - 1), we have
one more form of internal energy with a relaxation time of the order of the characteristic time of the process, i.e.,

en ~ L
For simplicity, we shall consider three characteristic times, so that &y = &, <« g5 ~ 1. This does not affect the
generality of the treatment. since all ¢j = €; or &; may be included in ey

33



As in the analogous case considered in §4, each v-state is characterized by two quantum nuinbers v, and vs. Again
as in §4 [formula (4. 8)}, in the zeroth approximation wc have

* m E"’ — BE™
(0) = m —
I8 n '(2 kT) eXP[ (ZkT kT)]/Zexp 7 (5. 13)
Representing the distribution function, as before, in the form (5. 4), we get the cquations for ¢,
d 1 e 1 (1) 1) 1 () 12)
(7"—'8—;2‘, )f\'m):?ZvJ J —f—;;—; J , (5. 14)

where the notation is the same as in (5. 5). It should be borne in mind, however, that ¢, and ¢k now relate to one state
Vg and %y and ¢ in the general case, to another state v, since by assumption ZU( ) and ZU(2) do not include transi-
tions between vz-energy and other forms of excitation.

Hence it follows that ¢, = ay,. where ay,, is some constant depending on vy and the macroscopic flow parameters
and the solution of the homogeneous equation. Therefore, in our case, there are not five eigenfunctions as before, but
(Ny, +4) functions P; == 0w,y ¥, mE/2 + EY; Ny is the number of vs-states.

After elimination of the partial derivatives with respect to t of n, uj, and T with the aid of Euler's equations (4. 2)
and the derivatives of n°® with the aid of equations (4. 3), in which v, u, k., and I must be replaced by vz, {3, ks, and
I3 (see $4), the left side of (5. 14) may be written in the form:

df EY 5 . E—g®(T) alnT
——— 3) (f (o)) __/(0) {(Zkl’ —-—2——|— T ) dz, e+
aul 1 m N
+kT (cl e’ ——6" )6x +[§ET02_1_
m — &,{ON(T) dea®\ 717 0%, (5. 15)
—k(fper— 5+ T (g k) Jat

i s 1
+ ¢’ _]‘r}bﬁ”ﬁ' + _v_ ZVS(S) (a) —_
r
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where, for brevity, Z, (3)(a) denotes the sum on the right side of an equation of type (4. 3) for nv? (see §4); Zy(3)(f (0))

denotes 2(3)1n Ea. (1. 1) with fv substituted for f,,.

In Egs. (4. 2) the internal energy is determined from Eq. (4. 9). The form of the left side of (5. 14) makes it possi-
ble to represent the solution of this equation as follows:

aInT
8xk

du
¢, =—4" cr’ — (Ck“cz" —x 6sz“2) —— D't

81'[
n/n (5. 16)
+ DRI o 6 o 4 B +’l’( ).

The functions A B. D, F, and G dependon T, the energy equations, and the composition of the mixture of vs-
gases, i.e., onalln Y3 and the velocity of the molecules ¢¥. The quantities &, B, and y do not depend on the velocity
c?. The constants of integration dyg By, and y do not depend on the velocity ¢;. The constants of integration ow, ay.
and y can be determined by imposing the conditions

ZS 1.9 v e 0, ZSgV/m) o*dE’ =0, ZS(”i;f + E") JOpds’ =0.

Vs v v

Then
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Therefore the general conservation equations (1. 5)-(1. 7) retain their form, and only the expressions for Pj; and qy
change. As compared with the preceding case. the expression for the heat flux contains an additional term, depending on
the diffusion of the vs-components of the gas and proportional to

Vi

3 g
vy 8$k n

and the expression for the diagonal components of the stress tensor a term not containing velocity gradients (this term ap-
pears since, in the general case. GY = 0). As equilibrium is approached, this term tends to zero. Note that, as above.
the quantity T in the macroscopic equations is not the same as the temperature determined from (1. 10). However, sys-
tem (1. 5)-(1. 7) is not closed. since, apart from the macroscopic variables n. u;, and T, these equations also contain

Ny unknowns n”3

In order to derive the equations for n¥s, we integrate (1. 1) with respect to £¥ and sum over all v, corresponding to
a given vs-state; we have

on” v
e Enm'zZSzv‘s’da . .17

Va2

The sums Ey(l) and ZU(Z) drop out, since the exchange of translational and vy-energy does not affect the number
of molecules in the vg-state. We transform the sum on the left side of the equation:

D= XNE A8 = }](Scrvads“wrgfvdé“)ﬂScrv]?vwwpvd&“+urn"~ SR

Vs Vg

Substituting ¢, from (5. 16), we find

En“ur" = un” - L"‘ + EM"‘ 8x ("v' ) , (5.19)

where L”3 and MY depend on T, the energy levels, and the local composition of the mixture of vg-gases. The right side
of (5. 17) may be rewritten: :
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In integrating allowance was made for the fact that the iransition probabilities may not depend on the orientation
and are functions of the relative velocity of the colliding molecules. The coefficients b¥i differ from the correspond-
ing ay; in (4. 10), since they include a contribution from the functions GY. Summing with respect to v, in the last ex-
pression, we finally get a system of semi-macroscopic equations for n”3:

on%  Oun” F) I T " AT
T T L +2Mﬂ (3x( ) =

. ke ls | 7vals Vel el kgl
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r

Hsk:ls

(5. 20)

These equations close system (1. 5)~(1. 7) with the above-mentioned values of €. ¢;, and Py

System (5. 20) may be further simplified if special assumptions are made about the transition probabilities. If the
vg-states characterize vibrational levels, then, as shown above, resonance transitions of vibrational quanta may be more
probable than transitions between vibrational and translational energy. In this case the resonance transition probabilities
may be either of the same order as or different from the transition probabilities for translational, rotational. or other
forms of energy. but greater than the probability of transition between translational and vibrational energy.

Then, relating relaxation transitions 1o e,-transitions, the distribution functions may be written in the form (cf. $4):

=12 1t+9), (5. 21)
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Apart from Zy(l) and Ey(z), the right side of (5. 14) also contains a sumn representing resonance transitions. The left
side of this equation may be written in the form:

a1, 4 m 5 E?—e\oInT
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Here the expression in square brackets stands for the right side of Eq. (4. 10) where all the v, p, k, and I must be re-
placed by vs, Hs kg, and Z.

From (5. 22) it is clear that, with the above-mentioned changes, the solution of (5. 14) differs in principle from
solutlon (5. 16) only in respect of the presence of a term proportional to aTk/ax and the absence of a term proportional
to 8n"3/0x,.

In the given case the number of arbitrary constants in the solution diminishes, since for arbitrary og the functions
Yy = O(.y3 are not a solution of the homogeneous equation including relaxation transitions. The solution will be Py = ayg=
= oE”3, since in relaxation transitions the vg-energy of the colliding molecules is conserved. Therefore the general solu-

tion of the homogeneous equation has the form:
v v
@y = o0+ Bece’ + ¥ (fame™ + E7) + cE™ .
The presence of six arbitrary constants makes it possible to impose six conditions on ¢,,, so that

2 S P’ =) S 190" =n 3 S Ef e = S £'f %8 =nu

v v v v
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Vg ' vs vy

where

g, = 2 E” exp —— (2 exp —— E - )-

Vs

Here, as above, the temperature T is not equal to the mean translational energy of the molecules, Obviously, Egs. (1.5)-
(1. 7) retain the same form as before. Only the form of the quantities Pij, q, and & changes. In accordance with the con-
ditions just formulated &= 3/2kT + €297 - £,9(T,). The expression for q, as already mentioned, contains a term pro-
portional to 8T} /dxy. The expression for the tensor Pjj remains formally the same as in the preceding case.

This system is not closed, since it contains two temperatures T and Ty,. Multiplying Eqs. (1. 1) by E”S, integrating
with respect to £¥, and adding, as with (5. 20), we get:

] 8 a ( aT oT,, ou
S “k
”(at +ur ax,)8k°)+ax ( 3z, T M axr)—b‘l'dax (5. 23)

where b and d depend onn, T, and Ty. Together with (1. 5)-(1. 7), Eg. (5.23) forms a closed system for determining the
six unknowns nn, u;. T, and Ty.

The above represents only the form of the equations of hydrodynamics for a relaxing gas with the internal degrees
of freedom taken into account. Finding the coefficients entering into these equations involves a great deal of work in de-
termining the transition probabilities and solving the kinetic integral equations.
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