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Introduction 

In investigating the flow of a relaxing gas with internal degrees of freedom it is customary to use phenomenological 
equations for the macroscopic quantities, including the second viscosity, the heat conduction due to internal energy trans- 
port, and the internal energy itself. In a relaxing medium the internal energy is not a function of temperature, but de- 
pends on the process and is determined by the probabilities of energy transfer between molecules during collisions. For 
the internal energy of the gas it is usual to employ a so-called relaxation equation of the type 

48 ~ - -  e (~ (Y)' 
dt - -  "~ (T, p) 

where d/dt is the substantive derivative, r176 is the value of the internal energy in the equilibrium state, and r is the 
relaxation time. 

In reality, however, expressions of this type are valid only if very special assumptions are made concerning the na-  
ture of energy transfer between molecules. Moreover, in the general case it is usually impossible to write a single equa- 
tion for the internal energy. The derivation of rigorous equations must be based on a kinetic analysis. 

A number of authors have attempted to derive from the Boltzmann equation macroscopic equations describing the 
motion of a gas with the internal degrees of freedom taken into account. In [1] the problem was formulated and the l im-  

iting cases of very fast and very slow transitions - from translational energy to internal energy of the molecules - dis- 
cussed. This t reatment  (unfortunately, known to the author only in the form of a very brief discussion of the results in 

[2]) has formed the basis of all  subsequent attempts. 

In [8] the influence of vibrational degrees of freedom on the coefficients of viscosity and heat conductivity was 

studied for the case where the t ime to establish equil ibrium between vibrational and translational degrees of freedom is 

much less than the characteristic t ime of the process. In [4] Zhigulev considered the case of flows with vibrational relax- 

ation on the assumption that the probability of vibrational energy transfer between molecules during collisions is of the 

same order as the probabilities of transfer of translational energy. In [5], which appeared after this paper had been pre- 

pared for the press, Vailander and Nagnibeda investigated the equations for a gas with internal degrees of freedom on the 
assumption that the gas is always in equil ibrium with respect to translational velocities. The contents of [5] are closely 

related to w of this paper, the subject of which is the general case of a gas with an arbitrary number of relaxation times. 

It is shown, in particular, that in the general case the diagonal terms of the stress tensor contain, in addition to the pres- 

sure p = R T p ,  another term that is independent of the gradients. Then the temperature entering into the equation is not 
equal to the mean translational energy of the molecules. 

w Following [1], we shall consider the translational motions of the gas molecules in classical terms and the inter- 

nal degrees of freedom in terms of quantum mechanics. Molecules in the quantum state v (with internal energy E v) will 

be regarded as a gas of the u-th kind, so that the gas represents a mixture of gases differing in their quantum states. The 
state v may be defined by one or more quantum numbers characterizing the excitation of rotational, vibrational or elec-  
tronic levels of the molecules. 

Let f v ( t ,  x ,  ~v)  be the velocity distribution function for molecules in the zJ-th state (of the v-th kind). Then Boltz- 
mann's  equation may be written in the form: 

"dt d/v = ~01" + = I [/kl, - -  L L ]  k' gv ,d kd ,d   (1 .1)  

gv~ = I ~ - - ~ v l  ( ~ = i  . . . . .  N; l * = i  . . . . . .  N; k = i  . . . . .  N; l = i  . . . .  ,N)  

where /),~ (~v ~lt Sh ,~l) is the probability (collision cross section) that as a result of a 'collision between molecules in 

states u and p with velocities gu and {P, respectively, the molecule u goes over into the state k and acquires a veIocity 

gk, while the ~-molecu le  goes over into the state l and acquires a velocity gl. The distribution functions are normalized 

so that 

n" (t, x) = I Ld ' (1. 
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whcre n u is the number  o f  part icles  in state v in unit vo lume.  

The mean  ve loc i ty  of  the u-th component  of the gas 

u ' ~ =  t I ,7 ~V~d~ 

Since the masses of  a l l  the molecu les  are the same, the macroscopic  ve loc i ty  of  the gas as a whole 

(]..~0 

t 

v 

where n is the total  number  of  molecu les  in unit volume.  Mult iplying each  of  gqs. (1. 1) by 1, gi u, and (1/2)mS uz + E u 

in turn, in tegra t ing  with respect  to gu, and summing  the equat ions with respect  to v, we get  the  fol iowing conservat ion 
equat ion:  

Conservat ion of number  of  par t ic les  

On OnUr 
o-T if- ~ = 0 . (~. 5) 

Conservat ion of  m o m e n t u m  

(04 ' ~  nm Ox i 

Conservat ion  of  energy 

where 

n + u, 0-Gd ~ T  + = % 

y, f. 
= ,~  ~ ~ e ~ V / ~  ~ ( ~ e  = ~ e  - , , )  (~. 8) 

v 

--if- kT = --#- , - i f -  lv  ~ (] .  10) 

e = - ~ - 2 E v n ~  (1.11) 

The r ight  sides of  the equat ions  vanish, s ince the to ta l  number  of  par t ic les ,  their  m o m e n t u m  and energy do not 

change  during coll isions.  Thus, we have  f ive equat ions with 14 unknowns: n, u i, qi, Pij, and s (the tensor Pij is sym-  

m e t r i c a l  and T can  be expressed in terms of  Pij)" 

w Before p roceed ing  to der ive  the  missing relat ions,  we shall  descr ibe a method,  more  conven ien t  for our pur- 

pose, of  expanding  soh t ions  o f  the Bol tzmann equat ion  with respect  to a sma l l  pa ramete r .  Let us wri te  Bol tzmann 's  equa -  

t ion for a m o n a t o m i c  gas in the  form: 

dl  t j._= t l 
d-T = -E "g (1~'I '  - -  I /- ,)  gP : :  (~, ~ ,  ~', ~ ' )  d~d~'d~{ (2. 1) 

1 

where the  same  le t ters  denote  dimensionless  functions referred to the i r  cha rac te r i s t i c  values;  then the pa rame te r  s is 

equal  to the rat io of  the m e a n  t i m e  be tween  col l is ions to the  charac te r i s t i c  t i m e  of  the process, i . e . ,  to the  Knudsen 

number.  

In tegra t ing  (2. 1) over  the  t ra jec to ry  of  the par t ic les  with v e l o c i t y  g, we have  

'I  / (t, xo + ~ (t - to), ~) -- / ( to,  xo,  i )  = -E-  ] (s, ,xo + ~ (~ - to), [ )  & �9 
ta 

(s. 2) 

Let r = t - t~ be o f  the order of  s, I f  over  the  length  of  the free path or in the  t i m e  i- = O(s)  the  distr ibution func-  
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tion changes so slowly (i. e . ,  if 8 << 1) that the changes may be neglected,  then the distribution function must satisfy 
the condition 

t 

I J (s) ds -= O, 
0 

J (t) = o .  (2. s) 

The second equation (2.3) is known to be satisfied by a local  Maxwell distribution. Thus. the assumption that the 
change in the distribution function over the free path is negligibly small  requires a local ly  equil ibrium veloci ty diStribu- 
tion. 

Let the variat ion of the distribution function over the free path be small ,  so that it can be represented in the form 

d/ ~=0 ~ i d2/] l ( t o+~ ,  x o +  g~, D = l ( t o ,  ~o, D + - d f  + - ~ - d - ~  1~=o ~ q . . . . .  (~.4) 

If we keep two terms of this expansion, then at each point of the flow the distribution function must be close to Max- 
wellian, i . e . ,  

( F l'I' -2kr'c' / / (t, x, ~) - -  1(o) (t, x, ~) [i -t- (P (t, x, ~)1 1(o) __ n / ~ J  

where f(0) is Maxwell 's distribution and ~ is a small  component. Substituting (2.5) in (2.2), we get: 

t,+x 

d/(~ ~=o ~ dJ(~ ~=o t i [J(1)(l'(P)2gJ(2l(~'c~)]ds 
dt + ~  "r 

t ,  

J(') ( I ,  = + - - h ,  

1(2) (cp, r = f /(o)h(o)(q)," q/ - -  ~(p,) gp,,,,'., (~, ~,, ~', ~ / )  dhd[gd["  

(s. 5) 

(2.6) 

From (2. 6) it is clear  that the function ~0 must be of the order of 8, so that, neglect ing quantities of the order of 
8 z, at any point x at any moment  of t ime we must have 

d[(O) 
8 dt = J ( 1 ) ( / , ~ ) ,  (2 .7 )  

the standard integral  equation for finding ~. The process may be continued so as to yield higher-order  corrections. 

Conditions (2.3) and (2. 7) presuppose that  the distribution function changes l i t t l e  over the free path or between col= 
lisions. If  the distribution function changes by a full order, then there are no supplementary conditions and it is necessary 
to solve the Boltzmann equation (2. 1) itself. 

Note that in order to construct a solution we only require the existence of the derivatives over the t ra jectory of the 
molecules d/dr, whereas the partial derivatives 0/Ot and O/Ox may not exist. 

w Boltzmann's equations (1. I) may also be written in dimensionless form: 

- -  = ~ - F  -Wa ~ ,  ~ - i -  �9 �9 �9 ( 3 .  I )  
dt 8~ v.kt e2 ~kl ~kl 

where the sums s (1), ~,u (2), etc. combine terms with coefficients 8i =1 of the same order. The value of the parameters 

e i is determined by the transition probabil i t ies  Pu~ k/. 

Usually the highest probabil i ty is that of transfer of t ranslat ional  energy from part icle  to par t ic le  without change in 

internal energy. We shall  assume that 8 i and s (t) re la te  to such transitions, 

Then follow the probabil i t ies  of transfer between translat ional  and rotat ional  energy, resonance exchange of vibra-  
t ional  quanta (without conversion of vibrat ional  into t ranslat ional  energy), transfer between translat ional  and vibrat ional  

energy, etc.  Since the probabil i ty  of exc i ta t ion  of molecular  rotations falls with increase in temperature,  while the prob= 

ab i l i ty  of exci t ing vibrations increases, at temperatures of the order of E. 5 -3. 0 �9 104 ~ these probabil i t ies  are of the 
same order [6], It is possible to get cases of "meshing" and other processes as, for example ,  transfer between vibrat ion 

and rotation, simultaneous exci ta t ion  of v ibra t ional  and electronic  levels,  vibrat ion and dissociation, etc.  However, in 

order not to compl ica te  the picture, we shall  disregard collisions with change in the number of particles.  

We shall  assume that there are certain "nonmeshing" processes or combinations of processes, so that  we can form 

the sums in (3. 1) with s 1 << 82 << 83, and so on. Each of these groups is character ized by its mean relaxat ion t ime  0 i = 
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= Gi 0, where 0 is the characteristic t ime of the process. As in the preceding section, we integrate (3. 1); we have 

t Jr "r t ,+-: 

' f + '  I + L (to + "~, x + ~-~, ~) - -  L (to, x,  ~) = W ~G . . . .  
t, l, 

(s. 2) 

Putting r = O(ei) and analyzing the nature of the variation of the distribution function during this t ime, we can derive 
supplementary conditions analogous to (2.3) and (2.7). 

w Let, for example, the flow be such that s 1 << e z ~ 1 << s a, and Iet the changes in the distribution function over 

the free path (or during t ime 01) be negligible. Putting r = OGi) in (3.2), we get s (t) = 0, and hence 

/ m \"/2 { m } ( 4 . 1 )  ] J o ) =  n ~_2Y~2_) exp - - ~ c  ~2 

i. e . ,  the translational degrees of freedom are in equilibrium at the translational temperature T. In this case there is no 
diffusion of the v-components,  since Ur v = u r. After substitution of the distribution function (4. 1) in Pij and qi the con- 
servation equations assume the form: 

On OnUr ( 3  O~r) t o p  
Ot' -Jr- Ox--~ = 0, ~ -~ Ur Ui -- rnn Ox i ' (4. 2) 

+ u , . ~  kT + =. 0-~ ' p = k n T .  

The system of six equations (4. 2) is not closed, since, apart from the ordinary hydrodynamic variables n, u r, p, 
and T, it contains the internal energy, to determine which it is necessary to know all the n u. In order to find the latter, 
we integrate Eqs. (1. 1) with respect to gu, substituting for fu on the right side the equil ibrium function with respect to 

translational velocities fu (~ 

Then, since Ev (t) = 0, we get the following system of semi-macroscopic equations (the term Eu (3) is neglected): 

On ~ Ourn ~ ~-- 1.~. ~ (e) (n n ak l  - -  n n a ~ )  ( 4 . 3 )  + OX r I~ p-kl k [ vp. v Ix kl,, 

where 

akt"~ = n'n~'[ f/..,(o)]~(o)p~([',,, [~, [~, ~t) g~,,,,d[kd[td[~d[,, 

is the velocity-averaged probability of transition of v- and ~-molecules to the states k and l, respectively, upon collision. 

Obviously, the coefficients a depend only on the translational temperature T. Thus, equil ibr ium of the gas with re- 

spect to translational degrees of freedom makes it possible to deal with less detailed information on the transition proba- 

bilities* in order to find n v (we need to know only the integral probabilities a rather than the differential probabilities P). 

Since the occupation numbers of the levels n u change by a full order during the relaxation t ime 02, assuming (e I "~ 1), in 

the general case it is necessary to solve system (4. 2) simultaneously with system (4. 3), i . e . ,  the process of taking into 

account the internal degrees of freedom can not be reduced to adding to system (4. 2) a single additional equation for the 

internal energy s. 

At the same time, in special cases with definite properties of the transition probabilities the system of nonlinear 

equations (4. 3) can be simplified or even reduced to a single equation for the internal energy or the temperature of the 

internal degrees of freedom_. 

Consider, for example,  a gas in which the transition probabilities have the following properties [7]. The highest 

probability is that of transitions with a unit  change in quantum number, i .e .  transitions of the form a (~+1)~-- a (v+l) ' v[~ v " 

The probability of deactivation is exp (AEV/kT) times greater than the probability of excitat ion of a level,  i. e , ,  

v--I v av  ~--- % - t e x p ( A E  ~'/kT), where AE v = E  ~ ' - E  ~-~ . 

* It is possible to deal with even less detailed information on the transition probabilities after summing the terms on 

the right side of (4.3): 

On v OUrn" = ~ nknlaVkz-- ~ n~nP'a~ 
: ot + 0~, r m V. 
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This assumption follows from the principle of detailed equilibrium. Further, let au v-1 = ua t~ ' We shall also assume 
that the levels E u are distributed as in an harmonic oscillator, i . e . ,  E v = uhc0, where w is the frequency. Then, neglect-  

ing transitions with changes of two or more in the quantum number, we get: 

Summing with respect to ~ and bearing in mind that ~ n~ = n, we have: 

8nV OnVur halo [vn v-I exp hr nV+l 

Multiplying each of equations (4. 4) by E ~ = uhw, and summing with respect to v, we get: 

(0 0) ( ( ho))c, 0, 
- -~  ~- u r ~ 8 = nao x t - -  exp ~ (T) 7- e) (4.5) 

e (~ (T) = h(o (exp hco / kT - -  t) -1 

where s(~ is the equil ibrium energy of the oscillator system at temperature T. Thus, in this case Eq. (4. 5) closes 

system (4; 2). 

In [7] k was shown that resonance transitions of vibrational quanta have higher probability than transitions between 
vibrational and translational energy. In this case the vibrational degrees of freedom come into equil ibrium at a certah-1 

vibrational temperature T k not equal to T [4]. 

Let 02 be the relaxation t ime of the resonance transitions and 03 the relaxation t ime for energy transfer between 

translation and vibration, and let 51 -< sz -< s3. 

: There are three possible cases. If the characteristic t ime of the process is small compared with 02, i . e . ,  S~ >> 1; 
then the flow is frozen. 

If s2 ~ 1 and ~2 << s3, then energy transfer between translation and vibration may be neglected, and the motion of 

the gas is described by system (4. 2). In the sums on the right sides of Eqs. (4. 3) there remain only the terms with reso- 

nance transitions. Obviously, in this case we have 

0 

since for such transitions there is no change in the mean internal energy of the molecules. 

Finally, if s2 << 6a ~ I, then, putting T ~ s I in (3.2) and assuming that in this time or over the corresponding dis- 

tances changes in the distribution function may be neglected, we get: 

The solution of this equation is the function 

to+~ te+'r 

to t3 

jr(o) [ m ~ 3/2 --mc~ 2 - -  EV / ~, --  EV 
=n~- '~ '-~-]  e x p ~ e x p ~  exp k - ~ - -  ~ . (4.6) 

Multiplying (I. I) by E u, integrating with respect to ~v, substituting distribution (4. 6) on the right side instead of f, 

and adding the equations, we get: 

) 
[Zexp(  "-EV/kTh)], kTk / - -  

v~l (4. 7) 

k, exp '  E ~ + E ~ ) ]  
av~ kT k �9 

Since in the equilibrium state s is uniquely related to T k, Eq. (4. 7) closes system (4. 2). 

In accordance with [7], the assumptions made in deriving (4. 5) hold true for "~ akt �9 If we again regard the molecules 

as oscillators with energy E v = vh~, then formula (4.5), in which s now has the equilibrium (at Tk) value 
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ha~ 1 e =- ho) s x p  kT  k 

also holds. 

As might  be expected ,  the presence of  resonance transitions has no ef fec t  on the form of the system of  macroscopic  

equat ions when system (4.2) can be closed with a single equa t ion  for the internal  energy [in our case Eq. (4. ,5)], since 

resonance transitions do not a l ter  the internal  energy of  the gas. 

Finally,  le t  us consider the c o m m o n  situation when one type (denoted by se) of  internal  energy (e, g . ,  ro ta t ional )  

is in equ i l ib r ium with the t ransla t ional  degrees of f r eedom (i. e . ,  s 2 << 1), whereas the  re l axa t ion  t i m e  for another  type 

(denoted by %) of internal  energy (e. g . ,  v ibra t ional )  is of  the same order as the charac te r i s t ic  t i m e  of  the process*, i .e . ,  

sa ~ 1. Each zJ-state may  be regarded as a superposition of  the u 2- and re-s ta tes  corresponding to the first and second 

types of  internal  energy.  We shall  apply the t e rm re-gas  to a gas consisting of  molecu les  with internal  energy of  the sec-  

ond type in the v3-state and in an arbitrary state v 2. In this case the distribution :function assumes the form: 

I m , ' I ,  - - m  - -E ~ {~  --,_,~va] -1 
iJ ~ = n~,t-~f- ) exp (2-gF c~2 ) e x p  ~ \T ,  exp ~ )  (4. 8) 

where 

The m e a n  in ternal  energy 

l - g T / z z e x P  - 7 ~ j  �9 (4. 9) 
V i V~ i L ~2 

In tegra t ing  (1. 1) with respect  to gv and summing  the equat ions with respect  to a l l  the  u 2 corresponding to a single 

u 3, whi le  bear ing in mind  that  

n ~ = n',  exp ~ exp 

we get:  

~?gVs OQ~ rn  v 8 

Ot "@ 0%. ~ - k t -  ,~ e x p  _ 

v~txkZ kl' (4. 1o) 

U, ~, 

Summing  the  r ight  sides of Eqs. (4. 10) with respect  to u 2, ~2, k~, and la, we get  Eqs. (4. 3) in which the  subscripts 

k, and l must be r ep laced  by u a, Pa, k3, and l a, respec t ive ly ,  where 

( ) a.,:a>,>, e x p  . 

- -  kT 
V2 v=~2kJ~ 

This system can be  reduced  to a s ingle  equa t ion  for s only if  the t ransi t ion probabi l i t ies  have  spec ia l  properties,  

e . g . ,  those assumed in der iving (4.5) or (4. 7). 

w In the p reced ing  sec t ion  it was assumed that  the distribution funct ion does not change  during a t i m e  (or over  a 

length)  of  order s I. We shall  now consider  a flow in which it is impossible  to n e g l e c t  such changes in the distr ibut ion 

function. At the same  t ime ,  t h e s e  changes wi l l  be assumed to be so sma l l  that  the distr ibution funct ion can be represent-  

ed in the form: 

! (to + x, = ! (to, x - -  + g / /d t  r =o* - (5.1) 

Here,  as above,  there  may  be a wide va r i e ty  of  possible re la t ions  be tween  the charac te r i s t i c  r e l axa t ion  t imes  and the 

charac te r i s t i c  t i m e  of  the process. Below we consider  some of  these.  Other cases may  be t rea ted  analogously .  

* All  that  follows remains  va l id  i f  there  is not  one mode  for which s 2 << s a, but severa l  modes  with s i << %, 
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I.et us consider first of all the case where all e, i <. 1 and during the tilnC a)ver the lcagth) of the lcastof thcm, a i, 
the cllange in the distribution function is given by (5. 1). This case ks discussed in retation to vibratk)nal relaxation in 
[3]. Putting r ~ s 1 in (3. 2), we get in the first approximation: 

Obviously, the solution of these equations is the distribution function corresponding to equilibrium between the 
translational and internal energy 

/(o) = n \ ~ l  e x p ~  exp- -~v-  �9 (s.,~) 

If we take into account small changes over a length of the order of s 1, the distribution function must be oniy slightly dif- 
ferent from (5.3), i . e . ,  

]~ =- I4~ + qD~) . (s. ~) 

Substituting (5.4) in (3.2) for T ~ s 1 and discarding terms of order s~, by analogy with (2.7) we get the linear in- 
tegral equations 

d/v ~ i '~-I(1) l- ( I ) ( / ,  ( p ) +  ~ "~.(2) 1" (1) 
at = ~ ~ avtd~t e---~ 

v 

(s. 5) 

where 

r (1) tr v~gv~ g ~ l  v ,  9) = f /4~  (% + % _ % _  %) p~t d~k dlZ din 

Spbstituting the function (5.3) on the left of (5.5), we get" 

dt =/v(~ ~ c'2 - -  g ~- kT Cr ~ %" k~  [Cr Ci - -  ~ ~ -at- (5.6) 

r i  m ,2 �9 , / m ~~ 3 - -d~  dd~ 
jo . 

Here the partial derivatives with respect to t have been e l iminated with the aid of Euler's equations (4. 2), and s(~ is 
the equil ibrium value of the mean internal energy: 

/? e(~ (T) = N E ' e x p  ( -  E~/ exp 

It is easy to verify that zero is an eigenvalue of Eqs. (5.5), and that the functions ~ i  = 1, ~i v, V=rrt~ v= -t- Ev 
are eigenfunctions. For the existence of a solution of the nonhomogeneous equations it is necessary that 

I d/v(o) 
~, ~ (~) - ~  d ~  ~ = 0 . 

*o 

Since the eigenfunctions coincide with the invariants by which the Boltzmann equations were mult ipl ied in deriv- 

ing the Euler equations (4. 2), used in obtaining expressions.(5.6), these conditions are fulfilled. The form of the left side 
of gqs. (5, 5) makes it possible to seek a solution in the form: .  

0 1 n T  v Out ~ Out 

o r  

% = - -  Ak ~ Ooz e Bt~ ~ + a + [~rc# + T + E~ 

where AkV, Blk v, and D v are functions of ci v, T, and E v. 

By an analysis analogous to that carried out in [8] it can be shown that 

" " ( t S,kc"~B', D" D" Ak ~ = c, A , Blk ~ = cFCk ~ - -  -g J = 

(s. 7. o) 

(s. s) 
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where A u, B v, and D u are functions o f c  u, T, andE u The constants oc, gr, a n d y  (or cd ~, g'{, andy*)  can be subjected 
to the conditions 

Then 

[ ( m:2 " " ,, 3 
, ~ k 2  ' " 

(s. ~o) 

It should be noted that with these conditions the temperature T is not equal to the temperature determined by 
(1. 10). Instead of the last condition (6.10), it is possible to require that the temperature be determined by (1. 10), i . e . .  
be a measure only of the translational energy of the molecules. In this case, however, the expression for the internal 
energy will be more complicated. 

Substituting (5.7. 1) in (6.6) and equating the ~erms associated with the same derivatives of the macroscopic quan- 
tities, we get integrat equations for A v, B u, and D u, for whose solution it is necessary to know the specific law of inter-  
action between molecules and the distribution of the molecules over the energy levels, together with all the transition 
probabilities. However, certain qualitative conclusions may be drawn directly from the form of the solutions of the equa- 
tions, without actually solving them, 

On substituting (8.4) in (1.7) on the left side, as a consequence of conditions (5.9), instead of s we can put the 
equil ibrium function e0))(T) defined by (<5.6). After substitution of (,5.4), the stress tensor Pij and the heat  flux vector 
qi may be expressed in terms of n, u i, and T, so that the system (1.5)-(1.7)  is closed. 

From the first and third of conditions (K 9), after substitution of (5.7.2).  it follows that c~ and ~ may be expressed 

in terms of 8nr/OX r, and from the second condition that fir is proportional to 81nT/Ox r. Therefore these quantities may 
be included in ArU and D v, respectively, without changing their essential form. Then the solution has the form (5.7. 1), 

where c~, 8r' and T are equal to zero. Substituting these solutions in the definition of the tensor Pij and the vector qi' we 
have 

P , .  = 2 = . ,  l < . .v . . ,o> d u  + s f c:.w,o, • 
P v '4 

q,.> = = !,:o, <P <m = - 

X 0T 

V id 1~ 

(s. 11) 

Where 

m ! B~c~,~ ~o) d ~v 
v 

= l dr, 
,r 

(5.1~) 

The shear viscosity g depends on the internal energy only via file transition probabilities (B v is not expressed directly in 

terms of Ev). The volume viscosity g is directly linked with the internal energy, since E v and ds(~ form part of the 

left side of the integral equation for Dr0 The quantities A u, and hence the heat conductivity Xl, can be represented in 

the form of two components, one of which depends directly on E u, while the other depends on E v only via the transition 

probabilities [this is easily seen from (5.6)]. 

Let us now consider the general case where, together with those already considered (s i << 1, i -< n - 1), we have 
one more form of internal energy with a relaxation t ime of the order of the characteristic t ime of the process, i . e . ,  

8 n ~I. 

For simplicity, we shall consider three characteristic times, so that .c~ -< s 2 << s 3 "~ 1. This does not affect the 

generality of the treatment,  since ali  s i # s I or s n may be included in s2. 
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As in the analogous case considered in w each v-state is characterized by two quantum numbers v z and v 3. Again 
as in w [formula (4.8)], in the zeroth approximation we have 

, , , , , ' , .  [ t(~ = n'ot~-f-~} exp - - ( 2 @ T o '  + exp  C.5. 13) 

Representing the distribution function, as before, in the form (5.4), we get the equations for ~o v 

~-t 8., / }o )  = 8, 7 E-~ , ' (.5. ~4) 

where the notation is the same as in (5.5). It should be borne in mind, however, dmt @v and @k now relate to one state 
vn and ~o~ and ~/, in the general case, to another state v 3, since by assumption Zu 0) and Ev (2) do not include transi- 
tions between v3-energy and other forms of excitation. 

Hence it follows that qv = av 3, where av3, is some constant depending on v 3 and the macroscopic flow parameters 
and the solution of the homogeneous equation. Therefore, in our case, there are not five eigenfnnctions as before, but 
(Nv s + 4) functions ~ i  = {Iv,, ~i v, m~ v, / 2 + Ev; Nvs is the number of vs-states. 

After e l iminat ion of the partial derivatives with respect to t of n, u i, and T with the aid of Euler's equations (4. 2) 
and the derivatives of n u3 with the aid of equations (4. 3), in which v, g, k, and / must be replaced by v 3, g3, ks, and 

/3 (see w the left side of (5.14) may be written in the form: 

{ (  m 5 EV'- -~(~  ,~ dl, (~ i X(~ (/co~) /(o~ ~ c ~  -- ~-~ ~ r  0~,  ~ C r 

dt  m 

m , 
+ f f  (c~c;--'g 

m 3 E v' - -  e2 (~ (T) de*(~ -1] Our (5.15) 

In nV'/n + c ;  0 0 ~  + ~ '  z~ ~ (a) - 

/ m ~2 3 E ~ - -  e~ (~ ~ 
v~ 

brevity, Ev3(~)(a) denotes the sum on the right side of an equation of type (4. 3) for n v~ (see w Ev(~)(fv(~ ) where, for 

denotes g0u)in Eq. (1.1), with fv (~ substituted for fv. 

In Eqs. (4.2) the internal energy is determined from Eq. (4.9). The form of the left side of (5.14) makes it possi- 
ble to represent the solution of this equation as follows: 

r _= __ A~O lnT._~x~ c~ ~__(c~cl  ---3 t ~klCv2 ) ~x k - -  O~tl D ~ Ou,.~x~ + 

+ E p~: o h,,,~,/,, a~ (mc~+ ~) (~.~) 
v Ox-------~-" ck~ "~- -[- ~ '  -~- ~kCk~ + T ~, 2 " 

The functions A, B, D, F, and G depend on T, the energy equations, and the composition of the mixture of v 3- 
gases, i . e . ,  on all n u3 and the velocity of the molecules c u. The quantities a, ~, and 7 do not depend on the velocity 

c u. The constants of integration av3, ~k' and 7 do not depend on the velocity c u. The constants of integration av 3 a k. 
and 7 can be determined by imposing the conditions 

VII V 

Then 

-o 8 

34 



Therefore the general conservation equations (1.5)-(1.7)  retain their form, and only the expressions for Pij and qi 
change. As compared with the preceding case, the expression for the heat flux contains an additional term, depending on 
the diffusion of the ua-components of the gas and proportional to 

and the expression for the diagonal components of the stress tensor a term not containing velocity gradients (this term ap- 
pears since, in the general case, G u ~ 0). As equilibrium is approached, this term tends to zero. Note ~hat, as above. 
the quantity T in the macroscopic equations is not the same as the temperature determined from (1. 10). However, sys- 
tem (1.5)-(1.7)  is not closed, since, apart from the macroscopic variables n, u i, and T, these equations also contain 
N s unknowns nU~ 

In order to derive the equations for nU3, we integrate (1. 1) with respect to gv and sum over all  u z corresponding to 
a given u3-state; we have 

-~ 4-  ~ ~ n~u,. " = 2~ (a) d~ ~ (~. iv) 
r v~ v 2 

The sums Zu (1) and 2v (2) drop out, since the exchange of translational and vz-energy does not affect the number 

of molecules in the u3-state. We transform the sum on the left side of the equation: 

V t V~ \ r 

(5. is) 

Substituting ~0 u from (5. 16), we find 

0T 0 (nvs I (5.19) 

where L u3 and Mvs depend on T, the energy levels, and the local composition of the mixture of u3-gases. The right side 

of (5. 17) may be rewritten: 

nM d.h = E(3)! (M,-&/,) dC 
v~ lxk l  

= E(3) S [/k(O)/l(0)(I -t- (Pk -~- q)l) --/v(0)/p, (0) (1 -~- q)v-JU (Pp.)] I)kv I g,p. d~ k d~td~d~ * = 
*j~kl 

__  o,,l ( 

- -  n ~' n ~' b ~  + ~ Ox~) exp -- kT 

In integrating allowance was made for the fact that the transition probabilities may not depend on the orientation 
v~ 

and are functions of the relative velocity of the colliding molecules. The coefficients b kt differ from the correspond- 
ing akl in (4. 10), since they inctude a contribution from the functions G u. Summing with respect to u z in the last ex- 

pression, we finally get a system of semi-macroscopic equations for nV3: 

(5.20) 

p~3ksls 

These equations close system (1.5)-(1. 7) with the above-ment ioned values of s, qi, and Ptj. 

System (5.20) may be further simplified if special assumptions are made about the transition probabilities. If the 

Us-States characterize vibrational levels, then, as shown above, resonance transitions of vibrational quanta may be more 

probable than transitions between vibrational and translational energy. In this case the resonance transition probabilities 

may be either of the same order as or different from the transition probabilities for translational, rotational, or other 

forms of energy, but greater than the probability of transition between translational and vibrational  energy. 

Then, relating relaxation transitions to si-transitions, the distribution functions may be written in the form (cf. w 

L = l]O) (i + %) , (5. ~1) 
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1,(o ) _ [ m \ 'h ( m E h  E ~, ~ [ \ ~  - - ~ '  - -  E"' ~-I (5 .21)  --nt-~EEp- ) exp - -  2k-~ e , ~ - - k T - - l d r ~ l t l . . ~ e x p ~ e x p - - F f i - -  ] �9 (cont'd) 
v i v~ 

Apart from Eu (1) and E S  2), the right side of (5.14) also contains a sum representing resonance transitions. The left  

side of this equation may be written in the form: 

d/v(0) _!_t ~( m EV2--s,(~ 
~,(3) (L(0)) = L(~ t t ~  d~ - } + " YT / ~ c; + dt e 8  

+ ~ -  ci ~ c7  - -  -g 8t, c ~' ~ + -g ~-~ - -  k ~ -2- + ~ / ]  x (5.22) 

( 3  del(O) ' - l  Our . Ev$--e.(~ OTk ( Ev*--ea(') dT. 
X ~ k -{- ~ )  ~ -}- kTk~ Ox r cVr Jr- " kVl~ dzh(o) - -  

_ . . .  

Here the expression in square brackets stands for the r ight side of gq. (4. 10) where a l l  the u, t~, k, and t must be re- 

placed by v 3, tx 3, k 3, and /s. 

From (5.22) it  is c lear  that, with the above-ment ioned changes, the solution of (5.14) differs in principle from 
solution (5.16) only in respect of the presence of a term proportional to 0Tk/~X and the absence of a term proportional 

to OnV3/0Xr . 

In the given case the number of arbitrary constants in the solution diminishes, since for arbitrary a a the functions 
~0 v = av  s are not a solution of the homogeneous equation including relaxat ion transitions. The solution will  be ~0p - a v ~ ;  

Y 3 �9 . = og , since m relaxat ton transitions the v~-energy of the col l iding molecules is conserved. Therefore the general  solu- 

tion of  the homogeneous equation has the form: 

% = a Jr- [~c~ ~ Jr" "r (V ",.mcv" -I- E ~) Jr- ~E ~s 

The presence of six arbitrary constants makes it possible to impose six conditions on ~o u, so that  

v I 

~jsNvl E f  ],d<~, ~Ev, E I  [l(O)d<,~ _n,k(o)(Tk) 
i l l  v~ v i  "~l 

where 

E v 3  

4 0' = oxp ( E  oxp - E -  
v I ~J$ 

Here, as above, the temperature  T is not equal to the mean  translat ional  energy of the molecules ,  Obviously, Eqs. (1. 5): 
(1.7) retain the same form as before. Only the form of the quantities Pij, q, and s changes. In accordance with the con- 

ditions just formulated e -~ 3/2kr + e P ) r  + e~10)(r~). The expression for q, as a l ready mentioned, contains a te rm pro- 

portional to 0Tk/0X r. The expression for the tensor Pij remains formally the same as in the preceding case. 

This system is not closed, since i t  contains two temperatures T and T k. Multiplying gqs. (1. 1) by E u3, integrating 

with respect to gu and adding, as with (5.20), we get: 

n -FUr-~-xr +~-xr L~ -@+M ~xr]  =b+do '~r  (5.23) 

where b and d depend on n, T, and T k. Together with (1 .5)- (1 .7) ,  gq. (5.23) forms a d o s e d  system for determining the 

six unknowns n, u r, T, and T k. 

The above represents only the form of  the equations of hydrodynamics for a relaxing gas with the internal  degrees 
of freedom taken into account.  Finding the coefficients entering into these equations involves a great deal  of work in de-  

termining the transition probabil i t ies  and solving the k ine t ic  integral  equations. 
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